

7

Abstract—The aim of this paper is to present an advanced

embedded system that was used in the past to build a paperless
recorder and that will soon be integrated in new OPC UA
architecture. More and more embedded devices used in process
monitoring and control are integrated in advanced OPC UA
architectures. The proposed system will achieve better
performances after the integration with the OPC UA architecture
since its features will be better exposed.

Index Terms—OPC UA, EMBEDDED LINUX, ARM,
PROCESS MONITORING AND CONTROL

I. INTRODUCTION

ROCESS monitoring is a large field of activity and there
is a large number of devices that perform several

monitoring tasks. There are single channel and multi channel
indicators, intelligent sensors and paperless recorders.

A data logger or recorder is an advanced device used for
data logging and display. Old recorders used paper as
informational support and were heavy machines, with lots of
mechanical components that were subject to periodic failure.
In order to view the recorded data one had to go through
meters of paper. A major disadvantage of such devices was
that the user got little information about statistical data and
had to manually extract it.

Nowadays recorders are a far cry from that: they use liquid
crystal displays with touch screen capability in order to
display the acquisitioned data and powerful embedded systems
with flash memory to store the data. These devices offer
advanced features like network connectivity through which
data can be remotely downloaded and advanced web interfaces
that allow configuration and control of the device.

Since paperless recorders can have both digital inputs and
outputs, one can use such a device for both process monitoring
and control.

II. THE IDMC04 PAPERLESS RECORDER
The IDMC04 (Inregistrator Digital Multi Canal - Multi

Channel Digital Recorder) is a paperless recorder developed
by the GenPro Company. It offers advanced process
monitoring and control features and is build using two
interconnected embedded devices:
• A liquid crystal display with touch screen used as an

Operator Panel (OP);

• A Linux embedded device that carried out all the data

logging and communication with the outside world;

These two embedded devices were connected using Ethernet
cable and Sockets were used in order to establish
communication.

The way these components interacted is suggested in Fig. 1:

Fig. 1. Connectivity.

The Integration of Embedded Devices with
Advanced Features in an OPC UA Architecture

Vasile Gheorghiţă Găitan and Alexandru Goloca

P

8

The Operator Panel (or simply OP) was developed on a
VGT-001 LCD terminal with touch screen capabilities. It
offers 640x480 resolutions and features a Windows CE® 4.20
operating system. The graphic interface is very rich and easy
to use, allowing the user to customize the way that graphic
controls look like and how they act using nothing but a pen.

The most important part of the IDMC04 is based on an
embedded device named TS7200 [1], produced by
Technological Systems. The main features of this embedded
device lead to plentiful computational power and a large
number of connections with the outside world.
• 200MHz ARM9 CPU (EP9302 developed by Cirrus

Logic);
• PC/104 expansion;
• 32MB SDRAM;
• 8MB NOR Flash;
• 1 10/100 Ethernet;
• 2 USB 2.0 (12 Mbit/s max);
• 1 Compact Flash socket;
• 2 COM ports;
• 20 DIO lines;
• 2 12-bit ADC;
• Watchdog timer, SPI bus;
• Optional 8 12-bit ADC and RS-485
• Low-power (400mA @ 5V)
• Fanless -40° to +70°C, +85°C 166Mhz
• Small size: 3.8 x 4.5 inches
• Redboot bootloader, Linux out-of-the-box

The EP9302 processor offers more than sufficient
computational power, thus allowing the development of many
concurrent applications on the same device. This leaves room
for many future developments and integrating the device in an
OPC UA [7] architecture is such a planned activity.

There are some major drawbacks of the current architecture
when it comes to operation and connectivity:
• There is a single Operator Panel and it is located in close

proximity of the TS7200 module – they stand inside the
same enclosure;

• The web interface does not allow any advanced
configurations of the device;

• For each new web client that connects to the device there
is a need for a new instance of the web server and this
leads to an overload of the embedded system.

A solution to this problem is to integrate the entire device in
a new and innovative architecture – the OPC UA architecture.

III. A CLOSER LOOK TO THE SOFTWARE ARCHITECTURE
The TS7200 module comes with an embedded ARM Linux

[8] and allows the development of complex multithreading
and multi process software applications.

The software residing on the TS7200 module was designed
and written as more Linux processes that use several
mechanisms to communicate with each other: message queues,
shared memory, sockets.

Some processes running on the TS7200 communicate with
the graphic application running on the Operator Panel using
sockets as a middleware, providing online data and events,

configuration information and history data.
Other processes from the TS7200 module are used to

communicate with the outside world, providing online data
and events to the client applets or providing history files.

The processes structure was suggested in Fig. 2:

Fig. 2. Existing Software Architecture.

9

A. Software model and features
The software running on the IDMC04 device follows the

hardware architecture, modeling the acquisition components.
It is 100% object oriented and all the C++ and Java classes
have been designed to offer the maximum amount of
portability.

Acquisitioned data comes from acquisition channels. These
acquisition channels are regarded as data streams, providing
the device with a constant flow of information at a given rate
(this rate is user-defined). Acquisition channels are organized
in groups called modules. There are a number of real
acquisition modules and also a virtual module, discussed later.

There are some actions that can be performed on the
acquisitioned data:
• Online sending to the Operator Panel in order to be

viewed by the human user or to one or more remote web
clients;

• History logging for later download and use in statistical
jobs or just viewing;

• Virtual data manipulation – acquisitioned data can be
manipulated in mathematical operations right on the
device, providing composite data.

History data can be downloaded using one of the two
different ways:
• One of the two USB ports of the TS7200 board and an

USB mass storage device (the device can be formatted
with FAT32 file system and there is no need for a special
USB stick);

• The web interface – one or more web clients can connect
to the device and remotely download the files using a very
simple, intuitive yet powerful interface which allows
choosing a very precise time interval.

The main components of the software are divided into
permanent running processes and processes launched on-
demand. The structure is as it follows:
• The Acquisition processes;
• The Online process;
• The Algorithm process;
• The History process;
• The HistServer process;
• The WebServerOnline process;
• The MailSender process;
• The CGI Application;

B. The acquisition processes
The acquisition processes gather data from different

sources:
• External Data Acquisition Modules (MAD – Modul de

Achizitie de Date) that use a RS485 network as
communication backbone and an ASCII protocol. These
devices are managed by the External Data Acquisition
Process;

• An internal acquisition board connected to the TS7200
module via a SPI interface, providing very good
resolution (up to a quarter of a second) and also a CJC
channel. This board is managed by The Internal Data
Acquisition Process.

Acquisition data is organized in modules, a module
containing several channels. Acquisition rate can be set for a
module (all channels belonging to that module will provide
data at the given rate) or for a single channel (the specified
channel will be sampled with the given rate).

This process provides online data to the online process and
to the History process.

C. The Online processes
This process provides online data coming from either one of

the external acquisition modules or the internal acquisition
board. Online data comes from the Acquisition Processes via
message queues, events come from all running processes using
message queues too.

This process uses a proprietary communication protocol
over an Ethernet connection using Sockets as a middleware.

In future developments this process will be replaced by a
ModBus [6] communication component, allowing online data
and events to be passed over to an OPC server. This extension
will allow for more than just one graphical client to extract
online data from the device.

D. The Algorithm processes
This process manages the concept of data virtualization and

virtual channels.
The device is equipped with a virtual module (one that has a

software mode but no hardware exists for it) that provides
user-configured virtual channels. These channels offer the
possibility to implement a large number of mathematical
operations, using acquisitioned data or software-generated
values as operands. The concept of virtual channel is a strong
tool for data manipulation, providing statistical and composite
data straight from the device.

A special type of virtual channels is called Alarm. An alarm
can be triggered when a user-defined condition is met or a
certain event occurred, thus enabling the detection of a critical
situation as soon as it appears. An alarm can cause data
logging to be performed at a higher rate when it’s active, thus
enabling a better resolution for the history data through the
critical period, which is good for further analysis of the critical
situation.

Alarm virtual channels can be directly associated with
output one or more of the relays of the device, enabling the
performing of a certain action when the alarm is triggered: e.g.
ringing a bell, turning on a distress light or even shutting down
the troubled device.

Triggering an alarm also has the effect of sending a
notification message to registered web clients, with a detailed
report on the situation that caused the triggering.

E. The History processes
This process gathers data coming from the Acquisition

Processes through message queues and events coming from all
running processes. Events are always saved in the history log
since they represent important notices, while data logging can

10

be enabled or disabled, for a single channel or for a group of
channels.

There are also a very large number of parameters that can
be adjusted in order to configure data logging and there are
several logging algorithms implemented, such as conditional
logging, threshold level logging (data is being saved only if
one ore more threshold conditions are met), differential
logging and so on.

Virtual channels can be saved into history memory as well
as real acquisitioned data, thus enforcing the capability to
provide statistical data. A virtual channel can be created using
mathematical operations that go from simple additions to
sophisticated formulas using data coming from other channels
as inputs.

The history process implements a special selective erasure
mechanism providing circularity for the history memory: old
data logs are being deleted when space is needed on the
memory, allowing the logging of new data to continue when
the memory card gets full as shown in Fig. 3:

Fig. 3. Circularity of the History Memory.

The acquisition rate used for a channel can be the same as

the logging rate or they can be different, in this case there are
several options for which data to save. These options are as it
follows:
• Maximum value of an interval – the maximum value

acquisitioned during an interval is logged;
• Minimum value of an interval – the minimum value

acquisitioned during an interval is logged;
• Both minimum and maximum values for the given

interval – a logging point containing two values is
created;

• The average value for the interval – the average value
acquisitioned during an interval is logged;

• The first or the last value from the interval – this creates a
logging point containing only a snapshot: the first or the

last value, with no respect to whether it’s maximum,
minimum or average.

There are some observations to be made related to the
History process. One of them is that solving the circularity
problem for the history data brought a major drawback: old
data might be deleted if there is no explicit action from a user
to copy that data on an external memory support via USB
flash memory or the web application. This drawback will
easily removed when the device will be integrated in an OPC
UA [7] architecture and there will be an OPC Server
permanently requesting data and recording it on a remote
memory support.

F. The HistServer processes
This process acts as a server and provides history data to the

graphical interface. History data (saved by the History
process) is recorded in so-called data points (a record that
contains a time stamp and the associated values). The
HistServer extracts the needed data points from the data
memory and sends them to the client.

Fig. 4. Connections of the HistServer process.

There is one major drawback of the current architecture:

there can be just one graphical client that can connect to the
server and extract history data. This drawback can be easily
eliminated when the device will be integrated in an OPC UA
[7] architecture.

G. The WebserverOnlineProcess
This process provides online data to the online web clients

represented by Java Applets running inside the web interface.
The process uses several communication mechanisms, as it

follows:
• Shared memory zones: this mechanism is used to

communicate with the acquisition process in order to
retrieve acquisitioned data.

• Semaphores: this mechanism is used in order to
implement inter-process synchronization between the
webserveronline process and other processes using the
same shared memory zone.

11

• Message queues: this mechanism is used to retrieve
Events from the History process.

• Sockets: this mechanism is used to communicate with
web clients found on the web and transfer data and events.

• Child processes: this mechanism is used to allow the
communication with more than just one client at a time:
for each new client trying to communicate there will be a
new child instance of the process. After creation, this
instance will deal only with its client.

There are some limitations that this process has and some of
them are that the more client applets try to connect to the
device, the more child processes are created. Currently, there
is a limit of 16 child processes and thus 16 clients that are able
to see the online data using the applets. This is a limitation that
can easily solved by the integration in OPC UA architecture:
the online data and events could be provided then by an OPC
UA server to several clients.

H. The MailSender Process
This process acts as a daemon that connects to pre-

configured SMTP [5] servers and delivers messages
containing details about the alarms and events that occurred
since the last sending. The amount of time between two mail
sending can be configured by the web interface administrator
as a global parameter but can also be overwritten by web
interface common users, depending on their needs. Thus the
interval can vary from a couple of minutes (if a very high
resolution is needed) to a couple of hours (if the user is not
concerned about very quick response but wishes to receive
some statistics).

The process is implemented using the Linux pthread library
for developing multi-thread applications: there is a separated
thread running for each user that wants to receive E-mail
notifications. This way there is a guarantee that the entire
process will not halt if one sending cannot be done due to
some reasons like an invalid E-mail address.

If one of the web interface users does not want to receive
notifications, one can simply disable the feature via the web
interface.

Mail sending is done using a temporization algorithm, as
shown in Fig. 5.

I. The CGI Application
This application was designed an implemented with respect

to the CGI [2] specification and it has the purpose to offer an
opened interface for web users.

The application uses Apache Basic Authentication [4] to
filter users trying to access the interface: only authorized users
can have access to the interface and non-registered users are
rejected.

There are two types of users:
• The Administrator: a special user with extended rights;
• Regular users with limited rights.

After login, a user can interact with an upper control panel
made of several links.

Fig. 5. The temporization of mail sending.

Using the web interface generated by the CGI application

one can have access to online data and events and can also
download history files from the device, both of this features
being made available through Java applets that are part of the
project.

Online data and events are provided by the
WebserverOnline process while downloadable history files are
provided by the Apache server [3] itself – the server was
configured to include the history directory as a source for data
available on the web.

There are some drawbacks of the current approach: the web
interface is not very customizable – there is a degree of
freedom but users don’t have the possibility to have bar graph
representations or trend graphs. This situation can be
improved by integrating the device into an OPC UA [7]
architecture where remote clients can offer the features that
the current applets lack.

IV. INTEGRATING THE DEVICE INTO AN OPC UA
ARCHITECTURE

OPC UA [7] stands for Ole for Process Control Unified
Architecture. This is a very modern and complex platform-
independent standard that allows various kinds of systems and
devices to communicate by sending Messages between Clients
and Servers over many types of networks.

This newly developed standard supports robust, secure
communication that assures the identity of Clients and Servers
and is able to resist almost any kind of attack. OPC UA
defines standard sets of Services that Servers may provide, and
individual Servers specify to Clients what Service sets they
support.

The next stage of the project is to integrate the device in a
complex OPC UA Architecture.

By taking this step, the device will open its gates to a new
world of communication and interoperability with other
similar devices.

12

A. Benefits
As mention until now, the current software architecture

might benefit a lot from this step. From the possible benefits
one could mention:
• The possibility to have more than just one complex

graphical client connected to the device and showing
online data (the current implementation allows for a
single complex graphical client and a maximum number
of 16 simplified web clients);

• The possibility to obtain complex statistics for very long
periods of time without the need to manually copy the
history data thanks to the OPC UA Server [7];

• Very secure data transfer over various types of networks;
• The possibility to act as a central dispatcher, controlling

complex systems.

B. Integration possibilities
There are several ways in which the current device can

become part of a complex OPC UA Architecture [7]:
1. The first step is to transform it into an OPC Client by

creating a process that is able to communicate using an
industrial communication protocol such as ModBUS [6],
Profibus [10] or CanOpen [9]. This will also allow the
device to communicate with existing older versions of
OPC Servers.

2. The second (and most ambitious) step is to transform the
device itself from a simple data source for an OPC Server
(as already suggested) to a central dispatcher by creating
an OPC UA Server application based on the latest
standards. This application will run on the TS7200 [1]
module itself and, thanks to the new UA Specifications, it
is no longer needed to use COM/DCOM as a middleware
and can take advantages of the flexibility offered by the
embedded Linux Operating System (the ARM Linux [8]).

A possible integration of the device might look as it is
shown in Fig. 6.

V. CONCLUSIONS
OPC UA technology promises to become the leading actor

in process monitoring and control. Built on the experience
gained from existing OPC versions, UA comes to offer a
complex cross-platform integration allowing complex
applications to interoperate in a secure way.

By integrating the existing device into a Unified
Architecture it will be transformed into a complex dispatcher,
possible part of a larger system but also a system itself.

The resulting device will be a modern control center, with
low power consumption but a very good integration within the
industrial environment, thus being able to fulfill complex
monitoring and control tasks.

By using CanOpen [9] as a communication protocol, the
device will be able to interoperate with a large number of
existing industrial devices using that protocol.

Fig. 6. The future integration of the device.

REFERENCES
[1] http://www.embeddedarm.com/products/board-detail.php?product=TS-

7200
[2] http://www.w3.org/CGI/
[3] http://httpd.apache.org/docs/
[4] http://httpd.apache.org/docs/1.3/mod/mod_auth.html
[5] http://james.apache.org/server/rfclist/smtp/rfc0821.txt
[6] http://www.modbus.org/
[7] www.opcfoundation.org/UA/
[8] http://www.arm.linux.org.uk/
[9] http://www.can-cia.org/
[10] http://www.profibus.com/

http://www.embeddedarm.com/products/board-detail.php?product=TS
http://www.w3.org/CGI/
http://httpd.apache.org/docs/
http://httpd.apache.org/docs/1.3/mod/mod_auth.html
http://james.apache.org/server/rfclist/smtp/rfc0821.txt
http://www.modbus.org/
http://www.opcfoundation.org/UA/
http://www.arm.linux.org.uk/
http://www.can-cia.org/
http://www.profibus.com/

