

128

Abstract—This paper presents a software for communication

in distributed client – server systems designed using Java
programming language. The server stores in a PostgreSQL
database prismatic and rotation parts needed for processing with
numerically controlled machine. The server and the clients can
be placed anywhere. The requests are sent from server to clients
or vice-versa, each client accessing the part existing on server
that must be processed locally. Once the part accessed, the client
receives the processing part program using numerically
controlled machine, the command program of the industrial
robot for unloading the parts (in an intermediate storage on MU1
machine or in the finished goods storage on MU2 machine),
geometrical, functional and topological parts’ features (necessary
for recognition using an artificial vision system placed on an
industrial robot).

Index Terms —client, server, web, Java, image.

I. INTRODUCTION IN DOMAIN
N a network environment classic with mainframe
computers, an application such as a database running on a

powerful central computer is accessed through terminals. The
terminal forwards a request to the mainframe computer, finds
the information requested and it shows the terminal.

The entire database is transmitted from the network server
in the form of messages and landed on the client computer that
launched the request. File transfer takes place through the
operating system for network and cable, there is a close
coordination between the client and server computer to
determine the data sought transmitted. The transfer of data
between clients and servers increases network traffic and
difficult to service other customers.

Development of computer networks has created opportunity
for corporations and institutions and to support the business
cycle with the information systems on a large scale.
Transactions between agencies, known as electronic
commerce (e-commerce), led to new patterns of interaction
between organizations and individuals. In this environment,
movement / transfer of funds is done electronically and must
fall within certain deadlines. Business applications that require
modern length transactions to be subject to constraints of time
in different degrees and are based on the interaction between
different computer systems. The real-time Real Times
Systems (RTS) and database client-server Client - Server
Databases (CS-dbs) are two basic goals that can help said.
Although there have been plenty of individual studies in these
two areas, a research overview was not conducted. In an RTS,
task-ROMs proposed system to be enforced limits were

imposed by application requirements. Using modern
techniques of programming and use of knowledge about the
task envisaged sites, RTSs have been designed so that
constraints on Job's individual meet a small percentage as
possible deadlines. On the other hand CS-dbs were designed
to benefit from the rapid improvement of computer power and
the ability of networks to transfer data to offer high rates of
audience. This improved performance is derived from the
efficient use of resources had available in a network of
customers. In this context, this process will be trading in real
time in a CS-dbs and will provide indicators on performances
and scalability of such systems. In RT-dbs transactions
involving the operations of I / O have imposed time
constraints on their achievement. Time constraints are
specified normally in the form of deadlines (deadlines). A
deadline is the last period of time possible for a transaction to
be completed in time (be useful). If you do not fall within the
time limit is exceeded or when the transaction is abandoned
and the new request is made by the server to meet the transfer
of data. Therefore, an important measure of the effectiveness
of RT-dbs is the percentage of transactions falling within the
deadline specified. In this paragraph is to investigate the
performance of CS-dbs in view of tasks in real time. Name
aggregate of these two systems is Client - Server - databases in
real time (CS-RTDBS - Client-Server Real-Time Databases)
(Figure II - 21). It will use the resources available at the site
and the customer will exploit the data provided by the
transaction to support a process in real time. A central
database in real time called Centralized Server Based Real
Time Databases (EC-RTDBSs) (Figure II - 22) is used as a
basic fundamental way. This foundation is used to determine
the parameters and operational profit in the configuration of
CS-RTDBS may offer promising results in terms of
performance expected. I chose not to use a database system in
real time as a starting point (foundation) for two reasons:

• the majority of current systems of data in real time have
centralized nature

• the absence of connections between nodes multiple
databases, the flexibility of such a system is limited.

Although the sites customers often seem to be directly
accessed by users, the situation is not always this. A bunch
format between client sites and related servers can be used as a
configuration of a system kernel that runs applications through
a virtual private network VPN (Virtual Private Network).
Users subscribe applications on the periphery of the nucleus.

Configuration CS-RTDBS proposed can be used to
facilitate the effective development of a wide range of systems

The Communication in Distributed
Client – Server Systems

Valeriu Lupu and Cătălin Lupu

I

129

applications. This set of software applications include:
• Services database very useful (Highly Available

Database Services): Such a database is the heart of
many operations in telecommunication operations and
their purpose is not only to work with a large volume of
data in real time, but and offer customers advanced
services and information.

• Architecture for Multimedia Servers (Multimedia-
Server Architectures): storage of a large number of
multimedia sources can be achieved by using multiple
servers cooperate. They may respond to rapid changes
in the characteristics considered in parallel with respect
to requirements of predefined quality of service.

• Ultra fast delivery of information via the Internet
(Ultrafast Internet Content Delivery): There are many
current efforts that attempt to use Web technology in
all fields. This can be achieved through the use of
delegation or multiple features content globally.

• Effective access to large communities of users of
electronic commerce (Efficient Access for Massive E-
Commerce User Communities): In search of ways to
ensure the existence of available resources
requirements of the user at any time, sellers remarkable
and corporations plan and implement systems
multiserver able to isolate class requirements.
Organizations may exceed delayed response of the
server overload.

• Infrastructure (WAP Wireless Access Protocol -
Related Infrastructure): WAP was developed as a
mechanism that allows access to information from the
Internet to a wide range of users who have limited
resources.

The following configuration will present models for

databases in real time and will present the algorithms on these
models. The transaction may use two models:

• model centralized database
• model of the database client-server .

 Here we assume that the database is a collection of objects

in uniquely identifiable. In the framework of the centralized
database (CE-RTDBS) server database operates all
transactions.

Server-RTDBS allocated a thread (thread of execution) to
the client / terminal in the system. This Thread maintains a
socket with the customer throughout the transaction.
Each client sends its transactions initiated by the server using
the socket, where all transactions received from all customers
are scheduled and executed. Server-RTDBS was designed to
be able to process a number of transactions simultaneously.
This is done by executing each transaction as an independent
thread. The number of transactions that can run competitor
depends on memory space available and access to database
objects. This is a form of rudimentary communication (query-
shipping). Customers (terminals) indicate the figure are points
of service and not made any process of trading.

In CS-RTDBS server allocates a thread for each client.
Each thread maintains such second socket connection with the
customer throughout the transaction. A connection is used
exclusively for messages while the other is used to transfer the
database. Here too, as in the case of EC-RTDBS for each
transaction is allocated a thread or separate but distinct
difference is that each customer transactions are scheduled
local, independent server. Customers also use the memory of
short and long term they have available. The data to the server
are stored in memory so that future applications of local data
can be met without interact with the server. Coordination of
competing requirements is evaluated by the server using a
table lock (lock table). Clients are allowed to have two types
of "lock" sites: shared-version "read only" (read-only) and
exclusive - the version read-write (read-write). The version
read-write can be attributed to just one single customer, in
turn, while the version of "read-only" can be accessed by more
customers simultaneously. The server connects objects given
access to customer requirements and responding in the order
in which they were made

These features are needed in order to recognize the parts
about to be processed using numerically controlled machine.
The parts image is captured by two video cameras placed on a
robot in perpendicular planes. The image captured is 3D. For
recognition it will be used a neuronal architecture such as
multilayer perception and the learning is made possible using
back propagation.

In this article it is presented only the communication client–
server using sockets to transfer the parts (Figure 1).

Fig. 1. Example of architecture for a distributed type of client – server

The “client” program contains three classes: „client”,

„network” and „writer”. Initially, the program imports three
packages: „java.io.*” (used for input/output actions; io = Input
/ Output), „java.awt.*” (used for graphical objects; awt =
Abstract Window Toolkit) and „sun.net.*” (used to establish a

130

connection between client and server).
In order to run the client program, the user will type the

following command:
java client <IP or address> <ClientName>

where:
java – the name of the application that launch the classes;
client – the name of the class that will be executed;
IP or address – IP address or server name;
ClientName – the name of the client who wants to connect

to the server.
In the following sections will be explained the three classes

of the client application.

A. The „client” class
The „client” class extends the Frame class, which has a

method called add. Using this method we can insert in the
middle of the frame an object of type network [1].

The class contains two methods: main and client.
In the main method it is verified if the number of arguments

is smaller than two. The arguments meaning is:
• args[0] – the IP or the server name;
• args[1] – the name of the client who wants to connect

to the server.
This function is the first that’s executed when the client

class is started.
In this method it is created an instance of the client class,

having as parameters the server IP and the client’s name.
The client method receives as parameters the name or the IP

address of the server (String host) and the user name (String
username). Inside the frame we insert a new object, which is
in fact a new instance of the network class, which has as
parameters the same values that this function receives. Then,
the frame size is set to (500,500). The method show() displays
the frame on the main screen.

B. The „network” class
This class extends the Panel class [2]. The meaning of the

variables is the following:
public static boolean afis – if it is true, then the messages

that are received from server are shown in the green box from
the client’s main window;

NetworkClient network_client – using this method, we can
declare a client. We use the specifications from the sun.net.*
package;

DataInputStream net_input – using this variable, the client
can receive messages from server;

PrintStream net_output – using this variable, the client can
send messages to the server;

static int modif=0 – if it is 1, then the image received from
server is shown in the client’s main window. This image is
called “imagine.gif”. If it is 0, then this image isn’t shown in
the window.

String username – user name;
boolean connected=false – if it is true, this means that the

client is connected to the server;

writer w – using this variable, we can create a new instance
of the writer class, which handles with the read of characters
or strings received from server;

String typed_line="" – the message that’s typed by client.
In the following sections it will be presented the methods of

this class.

C. The class constructor.
The constructor receives two parameters, which represents

the name or the IP address of the server and the user name.
Then we try to connect to the server, by calling the connect
method. If this connection succeeded, the connected will be
set on true and also a new instance of the writer class will be
created. If the connection doesn’t succeed, an error message
will be printed on the client’s console and the execution of the
application will be ended.

The connect method. This method tries to connect to the
server, which must be open for this communication on the port
1111. This port can be changed – if it’s already associated
with another application – but in this situation this number
must be changed in the client application and also in the server
program. The connection is realized by creating a new
instance of the class NetworkClient, which can be found in the
sun.net.* package. The arguments of this constructor are the
name or IP address of the server and the port number on which
we try to establish a communication. If the server is open,
thing that’s verified by calling the method serverIsOpen, a
message will be displayed. This message tells to the user that
the connection succeeded. Then, the net_input and net_output
variables are initialized with instances of the classes that
correspond to their definition. The serverOutput variable is
declared inside the NetworkClient class and it is initialized
when the constructor of the NetworkClient class is called.

The read_net_input method. This method reads a line from
server and returns the string received or null in case that an
input/output error occurs. It also returns null if there is nothing
available from the server.The write_net_output method. This
method writes a string to the server.

The close_server method. This method tries to close the
communication between client and server.

The keyDown method. This method is executed when a key
is pressed in the client’s window. If this key is backspace (so
the ASCII code is 8), the last character in the string will be
deleted. If the key is ESCape (with ASCII code 27) the
application will try to close the communication with server
and also to exit the program. Otherwise, in the string that’s
typed will be inserted the key that was pressed. Also, it will be
called the repaint method in order to make a quick repaint of
the client’s window.

The paint method. This method paints the client’s frame. If
the writing of messages from server is permitted, it will be
written the text „Hello, <UserName> !”, then it will be drawn
the two boxes in which the text will appear (one is red and the
other is green). In the box from the top of the windows (the
red one) will be shown the data typed by client and in the
other box will be shown the messages received from server. If

131

the modif variable is set, then the image imagine.gif will be
shown. This image is received from the server.

D. The „writer” class
This class handles with the reading of data from server.

This method extends the Thread class, which is specific for
repeated actions. If the keyword “RECV” is received from
server, the variable will become true. This string specifies that
a data transaction will begin between server and client. This
transmission represents the bytes of a “.gif” image. Then the
„SIZE nnnn” string is received. This string tells to the
application what size the file has. Then we’ll receive nnnn
character codes (ASCII code as a 2 character string, so this is
the code in hexadecimal). The data are decoded and written in
the file imagine.gif. Data are received since the “STOP” string
appears. In this case the modify variable from network class
will become 1 and the repaint method from the same class will
be called.

E. The “server” program
The server program must be started before the users are

trying to connect. If the server isn’t started, then the users that
want to connect to it will show an error message on their
consoles.

Calling the following instructions makes the start of the
server class:

for Windows Operating System (9x, Me, 2000, NT, XP):
java server
A complete syntax includes the definition of the path in

which the java program can find the classes (“.class” files).
It’s possible that the environment variable CLASSPATH shall
not be defined or shall not include a reference to current
directory (specified in this OS by “.” (point)). The complete
syntax is:

java –cp %CLASSPATH%;. server

in UNIX based OS:
java –cp $CLASSPATH;. server &

where $CLASSPATH represents the environment variable
that contains the path(s) where the “.class” or “.jar” files
should be searched.

The symbol “&” specifies to the UNIX OS that this process
must be executed in background. This process will be waked-
up when something happens on the port 1111. In this way we
can realize the multitasking in UNIX.

The server application contains two classes.
The server class extends the NetworkServer class, which is

a part of “sun.net” package. In this class we consider that the
maximum number of users is 1,000. The meaning of the
variables from the server class is the following:

• String user[] – this array will contains the name of the
users that are currently connected to server;

• String sir[] – in this array will be stored the last
message from each user;

• DataInputStream net_input[] – by using this array, the
server can receive data from clients;

• PrintStream net_output[] – by using this array the
server can send information and data to cliens;

• reader r[] – in this vector will be stored the addresses
of the „reader” class instances;

• static int client_counter=0 – the current number of
connected clients.

The main method creates a new instance of the server class.
The constructor of this class initializes the arrays presented

above. Then the server is started, by calling the
startServer(1111) instruction. This instruction starts the server,
specifying that the port on which the server will receive
message is 1111. This port number can be changed, but if is
changed in the server class it also has to be changed in client
class.

If the server was started successfully, a message is printed
on the server console:

Waiting for users …
If it’s not possible to open the server on the port 1111, then

an error message will be shown and the execution of this
application will be canceled.

The most important method in this class is serviceRequest,
which is a function of the NetworkServer class. When an
event occurs at the server, this function is automatically called.
In this function it is created an instance of the reader class.
This thing happens each time when a client is connecting to
the server.

The method read_net_input reads data from clients.
The method write_net_output writes data to clients.

The reader class
This class extends the Thread class. The most important

method of this class is run. This method is called each time
when an event occurs (connection of a client, the send of a
message from a client, etc.). In the case when an end of
sentence punctuation is signaled (point, !, ?), it is verified if
the message represents the standard syntax for sending data
(images). This syntax is:

SEND <ImageName> TO <user>

where ImageName represents the name of the image that’s
stored on the server and the user is the name of the user that
has to receive the image. Examples:

SEND image1 TO machine1.
Send image2 TO machine2.
The syntax is “case-insensitive”.

The server program can have the possibility to search the

image and after her index in a PostgreSQL or MySQL
database. Using the methods from the package java.sql we can
make the interrogation of the databases.

Window capture screen and test pieces are showed in Figure
2.a, Figure 2.b and Figure 2.c.

132

Fig. 2: a) widows screen; b) picture 1 c) picture 2

One or more clients can access the server to upload songs in

the PostgreSQL database [1]. Server applications store
customers to a queue of priorities. Access to the environment
is made according to how he made the request.

The customer can upload programs for machine tool [3]
with the leadership of robots or server can send this
information in the database. The server can be accessed and
transmitting site and the IP address of away. The server may
be in Suceava and customers can, for example, be in
Bucharest. The laptop (server) is connected with a mobile
phone to connect with specialized satellite communications
with customers place anywhere. Customers communicate with
the server transmitting site, the IP address of the server and the
client's behalf. In the event that a client has failed then the
owner of client-server application can intervene and fix the
fault. System administrator can intervene at any client to view
the stage at which they are situated and to intervene in case of
breakdown [3].

The following are programs for creating a database in
PostgreSQL necessary to describe the parts and
communication program for machine tool or robot, the
communication in the client - server (the client and the server).

Software client-server provides outstanding economic
effects on reducing energy consumption, the price of the entire
system cost and the area occupied by the distributed system.

Among the advantages of using software in client-server
monitoring and command lines of flexible metal coating can
be listed [6]:

• Traceability and registration the operation of the
flexible line, even where it is in the operating manual;

• The possibility that a single operator, in run
semiautomatic, to order all robots manipulator and carts
the flexible line;

• Ensuring the flexibility of the real line, to run
automatically, by the admission of any series of types
of pieces to the load.

Of all the programs for computer-assisted design, whatever
they are CAD, CAM and CAE, CATIA holds supremacy in
Chapter opportunities (Figures 3-9) [4, 5].

Among the possibilities are CATIA remember:
• constructive possibilities:
• 2Ddesign;
• 3D design;
• Ansambles
• Achievement;
• Design parts of the board;
• Designing mechanical structures;
• Possibilities for designing equipment, and

industrial
o networks:
o electric networks;
o hydraulic;
o technologicalϖ possibilities:

§ finite element analysis
§ simulation mechanisms;
§ manufacturing

133

Fig. 3: The design and programming robots.

Fig. 4. Modeling a tree meandering

Fig. 5. Modeling a whole

Fig. 6: Extracting the design of implementation of sinuous tree mode

Fig. 7. Analysis of tree meandering with how specialized FEA.

Fig. 8: Schedule processing a cylindrical pieces.

Fig. 9: Programming processing prismatic parts.

II. CONCLUSION
In this paper, we propose and experimentally evaluate the

use of the client-server database paradigm for real-time
processing. To date, the study of transaction processing with
time constraints has mostly been restricted to centralized or
“single-node” systems. Recently, client-server databases have
exploited locality of data accesses in real-world applications to
successfully provide reduced transaction response times. Our
objective is to investigate the feasibility of real-time
processing in data-shipping client-server database architecture.
We compare the efficiency of the proposed architecture with
that of a centralized real-time database system. We discuss
transaction scheduling issues in the two architectures and
propose a new policy for scheduling transactions in the client-
server environment. This policy assigns higher priorities to
transactions that have a greater potential for successful
completion through the use of locally available data. Through
a detailed performance scalability study, we investigate the
effects of client data-access locality and various updating
workloads on transaction completion rates. Our experimental
results show that real-time client-server databases can provide
significant performance gains over their centralized
counterparts. These gains become evident when large numbers
of clients (more than 40) are attached per server, even in the
presence of high data contention.

REFERENCES
[1] S. Lalani, K. Jamsa, „Biblioteca programatorului JAVA”, 1998
[2] Java on-line documentation (http://java.sun.com).
[3] V. Lupu, “Tehnologii informatice moderne utilizate pentru conducerea
sistemelor flexibile de fabricaţie” (teza de doctorat), 2004, EDP Bucureşti.
[4] Autocad ****Autocad , www.autodesk.com, aprilie 2003.
[5] CATIA **** www.3DS.com, aprilie 2003.

http://java.sun.com)
http://www.autodesk.com
http://www.3DS.com

