
 41

Abstract—The paper presents the architectural details and the

practical deployment aspects concerning a service-oriented

application focused on the resource monitoring within a Globus-

like Grid system. The implementation employs the Java and .NET

technologies and the user interaction is facilitated by a usable

Web interface.

Index Terms—Distributed Computing, Grid, Resource

Management, Web Service-based Interaction

I. INTRODUCTION

RID computing [8] – considered as a new paradigm for

next-generation computing – enables the sharing,

selection, and aggregation of world-wide distributed

heterogeneous (hardware, software, logical) resources for

solving large-scale problems in different areas of interest or for

proving access to massive repositories of data, information, or

knowledge.

Resource management and scheduling in existing

environments is a complex task. The geographic distribution of

the resources owned by diverse organization with different

usage policies, cost models, and varying load and availability

patterns is problematic. The producers – the owners of

resources – and consumers – the users of resources – have

different goals, objectives, strategies, and requirements [8, 10].

The paper will present a practical solution for easy remote

administration of a given Grid system by using a modular Web

application which facilitates a proper interaction between the

Grid platform and users (administrators). This solution is

denoted by GriW – a Service-Oriented Architecture (SOA) for

resource monitoring within a Grid based on the Globus

Toolkit.

The article has the following structure: next section shortly

presents the most important aspects of the Grid computing.

Section III describes the most important functional

requirements, and section IV gives a general perspective of the

This work was supported in part by the Romanian Ministry of Education

and Research under the “TELEMON – Complex System for Real-Time

Telemonitoring of Pacients” – Partnership Program (PNCDI PN II) Research

Grant (2007-2009).

Sabin C. Buraga is with the Faculty of Computer Science, “Alexandru

Ioan Cuza” University of Iasi, Romania (phone: +40 232 201090; fax: +40

232 201490; e-mail: busaco@info.uaic.ro).

Alina Sirbu is a Bachelor of Science, Faculty of Computer Science,

“Alexandru Ioan Cuza” University of Iasi, Romania.

GriW service-based architecture. Several examples of practical

deployment are also presented. The paper concludes with final

remarks and further directions of research.

II. OVERVIEW OF GRID COMPUTING

The actual Internet technologies’ opportunities have led to

the undreamt opportunity of using distributed computers as a

single, unified computer resource, conducting to what is

known as Grid computing [8, 10, 12]. Grids enable the

sharing, selection, and aggregation of a wide variety of

heterogeneous resources, such as supercomputers, storage

systems, data sources, specialized devices (e.g., wireless

terminals) and others, that are geographically distributed and

owned by diverse organizations for solving large-scale

computational and data intensive problems in science,

engineering and commerce. Our previous research directions

concerning different topics are available in [4-7].

According to IBM, “Grid computing allows you to unite

pools of servers, storage systems, and networks into a single

large system so you can deliver the power of multiple-systems

resources to a single user point for a specific purpose. To a

user, data file, or an application, the system appears to be a

single enormous virtual computing system.” [13]

Another most used definition is the following [15]: “Grid

computing enables virtual organizations to share

geographically distributed resources as they pursue common

goals, assuming the absence of central location, central

control, omniscience, and an existing trust relationship”.

Virtual organizations can span from small corporate

departments that are in the same physical location to large

groups of people from different organizations that are spread

out across the globe. Virtual organizations can be large or

small, static or dynamic. An example is one concerning

medical communities composed by several types of users:

hospitals personnel, clinical employers, patients themselves.

A resource is a shared entity available in the Grid. It can be

computational, such as a personal digital assistant (PDA),

laptop, desktop, workstation, server, cluster, and

supercomputer or a storage resource such as a hard drive in a

desktop, RAID (Redundant Array of Independent Disks), and

terabyte storage device. Other types of resources are the I/O

ones: sensors, networks (e.g., bandwidth), printers, etc. Within

a Grid, logical resources are also available: users, time

counters and others.

A SOA-based Solution for Resource Monitoring

within a Grid System

Sabin C. Buraga and Alina Sirbu

G

 42

The absence of a central location and central control implies

that Grid resources do not involve a particular central location

for their management.

The ultimate key point is that in a Grid environment the

resources do not have prior information about each other nor

do they have pre-defined security relationships [1].

Related technologies to Grid computing are peer-to-peer

(P2P) network architectures, cluster computing and, of course,

Internet and Web computing.

Grid applications are distinguished from traditional Internet

applications – mostly based on client/server model – by their

simultaneous use of large number of (hardware and software)

resources. That implies dynamic resource requirements,

multiple administrative domains, complex and reliable

communication structures, stringent performance

requirements, etc. [8].

According to [1], some of the important issues regarding

resource sharing across boundaries of organizations are the

following:

• Identity and Authentication;

• Authorization and Policy;

• Resource Discovery;

• Resource Characterization;

• Resource Allocation;

• Resource Management;

• Accounting/Billing/Service Level Agreement (SLA);

• Security.

Fig. 1. Layered Grid architecture [8].

Because the Grid systems are multifaceted, they present a

layered architecture – see Figure 1. One of the most important

initiatives in this area is the Open Grid Services Architecture

(OGSA) that employs the use of Web services technologies in

the context of Grid computing [3]. Grid services are in fact

Web services [9] executed to give access to resources by using

actual Web technologies and languages (e.g., WSDL – Web

Service Description Language, SOAP protocol, XML –

Extensible Markup Language).

A standardized model of infrastructure is available: Open

Grid Services Infrastructure (OGSI) [10] – see also Figure 2.

In order to include different Web service extensions – for

example, WS-Security and WS-Trust – and to define stateful

Web services, an important proposal is the Web Services

Resource Framework (WSRF).

A reference implementation of the Grid architecture and

Grid protocols is Globus providing software tools in order to

build grids and Grid-based applications. These open source

tools are collectively called the Globus Toolkit [15] – the

current version is Globus 4.

Other related projects are Apple XGrid, Condor, Legion,

and Sun Grid Engine.

The effort of standardization of Grid protocols, architectural

models, and software tools is carried by the Global Grid

Forum [14] and other related organizations.

Fig. 2. OGSI interfaces [10].

III. REQUIREMENTS REGARDING RESOURCE MONITORING

WITHIN A GRID SYSTEM

From the perspective of functional requirements, the

proposed application must provide an ergonomic user-

interface which facilitates the monitoring of Grid resources:

existing nodes (computers), average load for each node, data

transfers between nodes, etc. Every status change – e.g., a file

transfer is starting – must be notified. Periodically, the

application must query certain nodes about the available

resources.

In our case, there are two levels of resource monitoring.

By default, a given user can view only the Grid nodes and

he/she is graphically informed regarding the status change.

Selecting a node, the user must be able to see detailed

information. Certain important properties – for example the

node name and the loading percentage – are available as

tooltips. Additionally, for large Grid systems, users can filter

desired information to be presented – e.g., seeing only nodes

which respect a given criteria: a range of IP addresses, a form

of a symbolic name, etc.

On the other hand, GriW must provide means for

 43

administration of the Grid, including user management – e.g.,

adding, modifying, or deleting users – and access or/and adjust

the system configuration.

IV. SOA-BASED ARCHITECTURE OF THE APPLICATION

A. Brief Presentation of the SOA Paradigm

SOA (Service Oriented Architecture) refers to the design of

a distributed system. SOA is an approach that leads to take

concrete decisions when you design concrete software

architecture. Therefore, SOA represents a design

methodology, aimed at maximizing the reuse of multiple

services – possibly implemented on different platforms and

using multiple programming languages.

In a SOA platform, the services generally have some

important characteristics [9]:

• Services are autonomous;

• Services must be loosely coupled;

• Services can be composed to provide other services;

• Services can participate in a workflow;

• Services can be easily (automatic) discovered;

In addition, services must expose information – and

additional metadata (data about data) – such as their

capabilities, interfaces, policies and supported protocols. Other

details such as the programming language or the information

about the platform are not useful for consumers and – usually

– are not revealed.

Other details are provided by [11].

B. A SOA Approach for GriW Application

In order to provide its functionalities in a flexible manner,

GriW is represented by certain independent services. To

monitor the Grid resources, the WSRF (Web Service Resource

Framework) approach must be considered. WSRF is a

specification aligned to the SOA paradigm.

Each Grid resource is viewed as a WS-Resource – a

mapping between a Web service and a stateful resource. All

information within a Grid platform is managed (accessed,

altered, erased, etc.) by invoking the proper Web services.

Data obtained from called Web services will be available

for other applications via a GriW Web service, in an open and

platform-independent manner.

Also, the monitoring activity will be provided by another

Web service – named GriWService –, which is stateless,

because do not need to store the state of each of its clients.

This Java-based service effectively observes the Grid

resources and publishes important information about them

(including metadata).

As subservices, the following can be presented:

1. GridClient is responsible with the interaction to the

existing Grid platform by using the Globus Toolkit

API; in this context, Monitoring and Discovery

Services (MDS) are invoked to obtain information

about the system and its nodes. In order to have access

to information regarding the available resources and

their properties, the WS GRAM (Globus Resource

Allocation Manager) is used. The current file transfers

can be acquired via RFT (Reliable File Transfer)

service. The loading percentage for each node is

obtained by using SNMP (Simple Network

Management Protocol) because this kind of information

is not directly available at the Grid level. All

information will be assembled and published as SVG

(Scalable Vector Graphics) documents to be easily

presented to the final users. The above mentioned

services will be periodically invoked. The status

changes will be routed to the specific services (which

subscribed to these sorts of notifications).

2. SvgGenerator is a module able to serialize information

provided by GridClient as a SVG document.

3. GriWConfiguration provides the operations regarding the

application configuration. All configuration parameters

are stored as XML files, available at a local or remote

level for the users with the administrator credentials.

The user interaction is accomplished by the WebGriW

component which provides the Web interface. This component

is implemented in ASP.NET. Information obtained from

GriWService is presented as a SVG document directly in the

Web browser.

If the user has the administrator credentials, WebGriW

offers the possibility of changing the system’s configuration.

The authorization mechanism uses the native methods

provided by the .NET Framework.

Several reports can be generated on request or can also be

sent by email.

The overall architecture of the implemented application is

illustrated by the Figure 3.

Fig. 3. GriW service-based architecture.

C. GriW Implementation

From the software engineering perspective, GriW uses

several design patterns, such as MVC (Model-View-

Controller), Observer, Proxy, and Singleton.

 44

At the implementation level, GriWService is denoted by a

collection of Java packages. All Grid services – exploited via

Globus Toolkit 4 – are running into the Apache Axis

container. The structure of most important classes defined by

the GridClient is depicted in the Figure 4. To have access to

the SNMP functionalities, the SNMP4J open-source library

was adopted. In order to efficiently generate the SVG

representations, Apache Batik SVG Toolkit was used.

For WebGriW, in addition to ASP.NET 2.0, the WSE (Web

Services Enhancements) was installed, to effortlessly invoke

remote Web services. The Web interface is partly generated by

using asynchronous calls in JavaScript via AJAX

(Asynchronous JavaScript And XML).

Fig. 4. Classes used for Grid-related information encapsulation.

V. CASE STUDIES

A. Monitoring the Grid of an Academic Institution

This case study regards the access to the information

concerning the nodes of an academic Grid platform.

After authentication, the user will be able to consult the

general information regarding each node of the given Grid. By

default, only important date is available: hardware

characteristics (number and type of processors, processing

architecture, total memory, hard-disks capacity etc.) and

software attributes (average load, operating system, number of

services, transferred bytes) – see Figure 5.

Fig. 5. Essential information regarding a given node of a Grid.

B. Resource Monitoring in the Context of a Medical Grid

The second case study is focused on resource monitoring

issues on a Grid platform used in the context of e-health. To

accomplish this goal, the Telemon system was extended to a

test Grid. Telemon [2, 16] is an e-health system, intended to

allow real time patient monitoring by using Web technologies.

Because the Telemon architecture is aligned to the SOA

paradigm, the integration of its services into a Grid platform

was straightforward.

Using GriW functionalities, it is easy to notice the general

status of average load at the level of the Grid nodes and the

problems that could arise on a geographical area of interest

(e.g., Telemon regional subsidiaries).

In the Figure 6, detailed information regarding a given node

is provided, including the data transfers – in this case, patients’

personal records, hospitals’ availability, replicated data, and

many others.

Fig. 6. Detailed information about a node of the e-health system.

To easily recognize every kind of information presented to

the final user, a collection of assorted icons was designed.

Empirical interaction tests we conducted prove that solution

increased the ergonomics of the Web interface.

VI. CONCLUSION AND FURTHER WORK

The paper drew the main aspects regarding resource

monitoring within Grid systems. After presenting a general

view of Grid computing, in the section II most important

functional requirements was listed.

Section III detailed the SOA-based architecture of the

proposed application, called GriW, including the implemented

services at the Grid level and the Web interface available for

the authenticated users (administrators). Information collected

about the Grid nodes and subsequent resources can be

periodically updated via a notification mechanism.

Our solution is denoted by Grid services based on the Java

technologies and an ASP.NET C# application in charge with

the user interaction. The graphical interactive elements are

denoted as SVG constructs, not as bitmap pictures.

Two case studies were also described in the section V.

Our further direction of research is to provide more detailed

information for the each Grid node, including the semantic

ones – following the ideas from [4] –, and to study the multiple

deployment problems that can occur, including the possible

technological solutions.

 45

REFERENCES

[1] A. Abbas (Editor), Grid Computing: A Practical Guide to Technology

and Applications, Charles River Media, 2004

[2] L. Alboaie, S. Buraga, V. Felea, “TELEMON – a SOA-based e-Health

System. Designing the Main Architectural Components”,

Proceedings of the 9th International Conference on Development and

Application Systems – DAS 2008, Suceava, 2008

[3] F. Berman, G. Fox, T. Hey (Editors), Grid Computing. Making the

Global Infrastructure a Reality, Wiley, 2003

[4] S. Buraga, “Using the Grid and Semantic Web Technologies for

Resource Management”, Proceedings of the 9th International Conference

on Development and Application Systems –DAS 2008, Suceava, 2008

[5] S. Buraga, L. Alboaie, “Grid Computing in the Context of Semantic

Web-based Resource Management”, Proceedings of the 8th International

Conference on Informatics in Economy, Bucuresti, 2007

[6] S. Buraga, L. Alboaie, “A Metadata Level for the tuBiG Grid-aware

Infrastructure”, Proceedings of the 6th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing –

SYNASC 2004, Mirton Publishing House, Timisoara, 2004

[7] S. Buraga, M. Cioca, L. Cioca, “Grid-based Decision Support System

Used in Disaster Management”, Studies in Informatics and Control,

Number 3, 2007

[8] R. Buyya, “Economic-based Distributed Resource Management and

Scheduling for Grid Computing”, PhD Thesis, Monash University,

Melbourne, Australia, 2002

[9] T. Erl. Service-Oriented Architecture: Concepts, Technology, and

Design, Prentice Hall PTR, 2005

[10] J. Joseph, C. Fellenstein, Grid Computing, Prentice Hall Ptr., 2003

[11] N. Josuttis, SOA in Practice. The Art of Distributed System Design,

O’Reilly, 2007

[12] G. Von Laszewski, P. Wagstrom, “Gestalt of the Grid”, Tools and

Environments for Parallel and Distributed Computing, Wiley, 2004

[13] IBM Corporation’s Grid Computing Online Resources, Available:

http://www.ibm.com/developerworks/grid

[14] Global Grid Forum, Available: http://www.globalgridforum.org/

[15] Globus, Available: http://www.globus.org/

[16] Telemon Project, Available: http://profs.info.uaic.ro/˜telemonfcs/

