
 51

Rule-based System for Emotional
Decision-Making Agents

Valentin LUNGU

Abstract—This paper proposes a rule-based system that uses a

forward chaining and a backward chaining inference engine, a
truth maintenance system and emotion simulation to achieve
reasoning, fast decision-making intelligent agents.

An agent needs to be able to accomplish its goals. Hierarchical
goal decomposition is a powerful tool, allowing the agent to
represent and solve complex problems. A backward chaining
inference engine is best at breaking down goals into sub goals.

Agents in a dynamic environment where multiple aspects of
the world are currently changing must be able to infer new
knowledge about the world. Also, said agents should also be able
to act in uncertain conditions (conditions of uncertain
knowledge). A forward chaining inference engine is used to infer
knowledge about the world that is not strictly goal-related, and a
truth maintenance system is used to handle conflicting knowledge
and maintain a consistent set of beliefs about the world.

Emotion integration is necessary in generating complex
believable behavior, making the agent decision-making process
less predictable and more realistic as well as generating actions
in time comparable to human reaction time.

Index Terms—multi-agent system, rule-based system,

inference engine, forward chaining, backward chaining, truth
maintenance system

I. INTRODUCTION

UTONOMOUS artificial intelligent entities are required
to be able to exist in a complex environment and respond

to relevant changes in the environment, deliberate about the
selection and application of operators and be able to pursue
and accomplish goals. This paper proposes a rule-based
system that involves both forward and backward chaining and
a rule maintenance system in order to provide an architecture
for the development of fast decision-making agents. In the
following sections, the features of this framework, the reasons
for which they are needed and the way they interface with
each other will be elaborated. Last, but not least, we discuss
the value of integrating emotions with our agents, and a
possible way to do so.

Manuscript received December 10, 2009.
Valentin LUNGU is a Ph. D student at the Faculty of Computer Science

and Engineering and Automatics, Politehnica University, Bucharest.
(phone:0723159898; e-mail: valentine.lungu1403@cti.pub.ro).

II. INFERENCE ENGINE

A. Backward Chaining

Backward chaining is a lazy inference method. It only does
as much work as it has to. Backward chaining starts with a list
of goals (or a hypothesis) and works backwards from the
consequent to the antecedent to see if there is data available
that will support any of these consequents. An inference
engine using backward chaining would search the inference
rules until it finds one which has a consequent that matches a
desired goal. If the antecedent of that rule is not known to be
true, then it is added to the list of goals (in order for one's goal
to be confirmed one must also provide data that confirms this
new rule), making it ideal at building an at least partially (we
may have to accomplish disjoint goals, as well as having to
accomplish several goals concurrently with no specified order
in order to confirm a rule) ordered plan to follow in order to
achieve the agent’s goals, dynamically decomposing goals
into subgoals recursively until the agent selects among
primitive operators that perform actions in the world. The
backward chaining part of our inference engine accomplishes
our agent’s goal-oriented planning, resulting in the
composition of a plan, a sequence of partially-ordered goals to
pursue in the future.

B. Forward Chaining

Forward chaining is a data-driven inference method. The
engine hungrily awaits new knowledge in order to apply rules
that match existing data.

A

 52

Forward chaining starts with the available data and uses
inference rules to extract more data (from an end user for
example) until a goal is reached. An inference engine using
forward chaining searches the inference rules until it finds one
where the antecedent (If clause) is known to be true. When
found it can conclude, or infer, the consequent, resulting in the
addition of new information to its data.

Forward chaining inference engines will iterate through this
process until a goal is reached. This seems as an ineffective
way to go about solving a problem, especially when we have a
large number of rules and data and only a few paths that lead
to goal states. Backward chaining seems to be the better
problem solver, and indeed it is; however, backward chaining
does have a weakness, it never infers data that is not explicitly
goal-related, even if somewhere down the inference path it
may lead to goal-related data, or worse, conflicting data. In
essence, we are using the forward chaining part of our
inference engine to gather knowledge about the complex,
dynamic environment, where multiple aspects of the world
may be changing at any given moment. When run, a forward-
chaining algorithm presents a conflict set of rules to apply (all
rules that match current knowledge). Ways of deciding on
application order will be discussed in a further section. At
times, our forward-chaining inference engine may infer
contradictory data; we need a way of detecting and dealing
with such situations. The best approach is a truth maintenance
system. Also, given that rule-based systems may have a large
number of rules working with a large knowledge base, we
need a fast pattern-matching algorithm (pattern-matching may
be as much as 80% to 90% of the effort of a forward chaining
rule based-system). A good approach to this is using the
RETE pattern matching algorithm, as it interfaces well with a
truth maintenance system, as well as with our backward-
chaining generated plan. The forward chaining inference
engine’s purpose is to reason about the world, gather new
information and make necessary assumptions in order to keep
belief (knowledge) base consistency; rules that contain
primitive operators that take actions in the world should not be
here, although we will keep the architecture flexible and allow
for them; a separation mechanism will be required between
the two. The end-product of the forward chaining inference
cycle will result in the addition and retraction of rule instances
to and from an agenda of rules to be applied.

C. Pattern Matching (RETE)

The RETE algorithm is a fast pattern-matching algorithm
that compiles the left hand side of the production rules into a
discrimination network (in the form of an augmented dataflow
network). Changes to working memory are input to and
propagated down the network and the network reports
changes to the conflict set of rules to be executed (adding new
rule instances that have activated and retracting old ones that
are no longer valid from the program’s agenda). Our
backward-chaining generated plan may benefit from this
compilation of the network as well, since we may identify
goals in the plan that may have been instanced in the agenda.

Our next problem is conflict resolution. In which order
should the instanced rules in the conflict set be scheduled in
the agenda, in order to be applied? The following approach is
proposed: rules are ordered by user-specified priority (as
salience in CLIPS, or PR in GPSS/H), then, these subgroups
are sorted by specificity (from most specific to least specific),
and these subgroups are further sorted by how recently the
facts used to instantiate the rule were added to the knowledge
base. A metarule approach is also possible.

D. Truth Maintenance System

A truth maintenance system is used to maintain a consistent
set of beliefs about the world. It is based on the following
principles:

 each action in the problem-solving process has an
associated justification

 when a contradiction is obtained, find the minimal set
of assumptions that generated the contradiction.
Select an element from this set and defeat it. The
justification for the contradiction is no longer valid
and the contradiction is removed.

 propagate the effects of adding a justification and of
eliminating a belief (keep consistency)

A truth maintenance system keeps beliefs as a network of
two types of nodes: beliefs and justifications. A belief is an
expression which can be true or false. A belief node contains a
label (IN if the belief is considered true, OUT otherwise), a
list of justifications for the node, and a list of the justifications
of which the node is part of (and the label it must have in
order for that justification to be valid). Justification nodes
contain the following information: the inference type of a
justification (in our case premise (always IN) or modus
ponens (inferred)), a list of nodes the justification justifies and
a list of nodes (and necessary associated values) that
participated in the inference. This representation allows the
propagation of consequences through the belief network of an
agent. A truth maintenance system is easily integrated with the
RETE pattern-matching algorithm (nodes that are IN will be
considered true, and present in the RETE network, and nodes
that are OUT will be considered false and will not be present
in the RETE network; nodes that change state from OUT to
IN will be added and nodes that change state from IN to OUT
will be retracted from the RETE network).

As can be seen, the RETE network and a TMS are easy to
interface with each other, since they operate on different areas
of a rule system (working memory vs. rule base).

Truth maintenance systems are not usually used alongside
backward chaining inference engines because the inference
engine rarely changes a node’s state; however, should this
occur, the change is fed into the TMS by the inference engine
and the changes propagated through the network, just as in the
forward chaining case.

E. Operating Principles

In this section we will present the operating principles of
the proposed architecture. The architecture is meant to

 53

facilitate the design of fast reasoning decision-making agents.
We have discussed the mechanisms that will allow an agent to
decide which rules to execute in order to achieve its goals in
previous sections. We will present the way in which the rule
based system’s components are meant to operate.

We have affirmed that a forward chaining inference engine
is a slow and ineffective way of handling a given problem,
however, it is needed in order to gather knowledge about the
dynamic environment in which the agent exists. This means
that we do not need to run the forward chaining engine every
cycle. Our agent can keep working towards its goals, and only
gather extra information when it is deemed necessary,
therefore making decisions a lot faster, and more goal
oriented, while still reasoning about the environment.

// basic operating algorithm

algorithm (KB, RB, goals) { // knowledge
base,

// rule base,
goals

 beliefs = TMS (KB) // assert all
knowledge as
 // premises in belief

base
 rete_net = RETE (RB) // initialize RETE

network
 plan = {goals}
 while (not (null plan)) {
 update (plan)
 action = extract (plan) // choose

possible action
// from plan

 execute (action)
 update (beliefs)
 update (rete_net)
 if (should infer new knowledge){
 while (not (null agenda)){
 rule = choose (agenda)
 apply (rule)
 update (beliefs)
 update (rete_net)

- remove rules which are no
longer valid from agenda

 + add new valid rules to agenda_tmp
 }
 agenda = merge (agenda, agenda_tmp)
 }
 }
}

III. FUTURE WORK

A. Satisficing

In some situations, an agent may not have time to consider
all options and possibilities. An agent should be able to take
reasonable action with the information at hand, even if
incomplete.

B. Reasoning Under Uncertainty

When presented with a conflict in the truth maintenance
system, an agent needs to make a decision which assumption
to defeat from the minimal set of assumptions justifying the
contradiction. Also, when presented with an impasse, the
agent needs to determine the best assumption to make. The
assumption that brings it closest to its goal state is not
necessarily the best.

C. Emotions and Decision-Making

Although it is clear that emotions sometimes impede
deliberative decision-making, one school of thought affirms
that emotions provide a way of coding and compacting
experience to enhance fast response selection. In evolutionary
terms, it is better to respond immediately to a threat than take
the time to rationally consider the best course of action.

Another use for emotion simulation in multi-agent systems
is generating complex believable behavior, important in
simulation environments and human – computer interaction.

 Future work involves exploring and integrating both
schools of thought into the architecture.

D. Learning

An agent needs to be able to analyze past actions and
determine the cause of its successes and / or failures, as well
as be able to shortcircuit rule application sequences. Future
research will attempt the integration of a history function and
tools that will allow the agent to analyze and synthesize its
history, possibly adding new rules to its long-term memory.

REFERENCES
[1] Langley, P. et al., Cognitive architectures: Research issues and

challenges, Cognitive Systems Research (2008),
doi:10.1016/j.cogsys.2006.07.004.

[2] E. Chown, R. M. Jones, A.E. Henniger, An Architecture for Emotional
Decision-Making Agents, Interservice/Industry Training Systems

[3] and Education Conference(I/ITSEC) 2002
[4] R. M. Jones, An Introduction to Cognitive Architectures for Modeling

and Simulation, Interservice/Industry Training, Simulation, and
Education Conference (I/ITSEC) 2004

[5] Soar: Along the Frontiers, Soar technology 2002, www.soartech.com
[6] Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). Soar: An

architecture for general intelligence. Artificial Intelligence, 33(1): 1-64.

	I. INTRODUCTION
	II. Inference Engine
	A. Backward Chaining
	B. Forward Chaining
	C. Pattern Matching (RETE)
	D. Truth Maintenance System
	E. Operating Principles

	III. Future Work
	A. Satisficing
	B. Reasoning Under Uncertainty
	C. Emotions and Decision-Making
	D. Learning

